Feb 2023
NetLogo Exercise

With a little help from our friend ‘copy and paste’, we are all going to quickly build a simple agent-based model.

The purpose of the exercise is for you to get a real feel for what an agent-based model is.

We are using a famous example model, the Segregation model, based on the work of Thomas Schelling. This is a simple toy model, but speaks to some of the concepts of complex systems we have covered, and is a model that has been extended in many ways to explore real world policy questions.

Following the instructions during the class, you will be copy and pasting sections of the code below into NetLogo, and running the model. We will also need to create some buttons, sliders, and plots in the model.

globals [
 percent-similar ; on the average, what percent of a turtle's neighbors
 ; are the same color as that turtle?
 percent-unhappy ; what percent of the turtles are unhappy?
]

turtles-own [
 happy? ; for each turtle, indicates whether at least %-similar-wanted percent of
 ; that turtle's neighbors are the same color as the turtle
 similar-nearby ; how many neighboring patches have a turtle with my color?
 other-nearby ; how many have a turtle of another color?
 total-nearby ; sum of previous two variables
]

to setup
 clear-all
 ; create turtles on random patches.
 ask patches [

 set pcolor white
 if random 100 < density [; set the occupancy density
 sprout 1 [
 ; 105 is the color number for "blue"
 ; 27 is the color number for "orange"
 set color one-of [105 27]
 set size 1
]
]
]
 update-turtles
 update-globals
 reset-ticks
end

to update-turtles
 ask turtles [
 ; in next two lines, we use "neighbors" to test the eight patches
 ; surrounding the current patch
 set similar-nearby count (turtles-on neighbors) with [color = [color] of myself]
 set other-nearby count (turtles-on neighbors) with [color != [color] of myself]
 set total-nearby similar-nearby + other-nearby
 set happy? similar-nearby >= (%-similar-wanted * total-nearby / 100)
 ; add visualization here
 if visualization = "old" [set shape "default" set size 1.3]
 if visualization = "square-x" [
 ifelse happy? [set shape "square"] [set shape "X"]
]
]
end

to update-globals
 let similar-neighbors sum [similar-nearby] of turtles
 let total-neighbors sum [total-nearby] of turtles
 set percent-similar (similar-neighbors / total-neighbors) * 100
 set percent-unhappy (count turtles with [not happy?]) / (count turtles) * 100
end

; run the model for one tick
to go
 if all? turtles [happy?] [stop]
 move-unhappy-turtles
 update-turtles
 update-globals
 tick
end

; unhappy turtles try a new spot
to move-unhappy-turtles
 ask turtles with [not happy?]
 [find-new-spot]
end

; move until we find an unoccupied spot
to find-new-spot
 rt random-float 360
 fd random-float 10
 if any? other turtles-here [find-new-spot] ; keep going until we find an unoccupied patch
 move-to patch-here ; move to center of patch
end

